The Role Packet Loss Plays in IT and OT Network Performance

Nobody likes a bad packet.

Depending on the network architecture, however, IT and OT network managers look at packet loss differently.

The impact of packet loss

Packet loss negatively impacts IT/OT convergence by reducing throughput and increasing latency. IT and OT network managers look at packet loss differently.

Why do these managers have unique reasons for wanting to banish bad packets? Panduit’s “What is the Impact of Packet Loss?” white paper answers this question, by discussing issues both IT and OT managers encounter as they transform their networks to support business success in the IIoT era.

Reduced throughput
IT network managers dislike packet loss because it steals valuable bandwidth, reducing the link’s available throughput. Typical latency of the enterprise network is responsive enough for their applications.

There is an insatiable appetite for more throughput in enterprise networks, however, not to mention the demand from the myriad connected devices in our homes and in our offices.

A corrupted packet reduces throughput when the switch discards the packet, and again when it is re-sent – essentially causing the packet to be sent twice and reducing a network’s available throughput.

Increased latency
OT network managers look at corrupted packets through a different lens. On the factory floor, a network’s latency is more important than bandwidth or throughput.

For example, when a sensor on the factory floor sends a packet to request an action, it needs the response in milliseconds. The corrupted packet cannot deliver the request, and the retransmission delays the decision on the appropriate action to take. This event can be costly.

IT/OT Convergence
According to Craig Resnick, vice president of ARC Advisory Group, “to properly address the issue of minimizing the corruption of packets requires the convergence of IT and OT, both from a networking infrastructure perspective and a human resources perspective. Converged network architectures bring together IT and OT systems that have long remained separate. As a result, IT and OT professionals who previously only oversaw their own individual systems now must also understand the counterpart technologies to, for example, help eliminate corrupted packets.”

To learn more about the impact of packet loss and how to minimize corrupt packets, no matter your network perspective, download Panduit’s “What is the Impact of Packet Loss?” white paper – or subscribe to our blog to receive our complete 4-part series of IoT 101 white papers.

 

How Packet Loss Occurs In Network Infrastructure

Causes of Packet Loss

Packet loss reduces network throughput and adds to latency.

 

Packet loss impacts a network in two ways: it reduces throughput and adds to latency.

But why does packet loss occur in the first place?

The following excerpt from Panduit’s “What is the Impact of Packet Loss?” white paper focuses on the root causes of packet corruption and its prevention.

Corrupted packets can occur when they encounter a bit error as the packet moves from one end of the network to the other. Bit errors almost always occur in the lowest layer of a protocol stack, the physical layer. The job of the physical layer is to move information from one end of the network to the other.

Typically this information is represented by a stream of 0s and 1s. The physical layer does not assign any meaning to the stream of 0s and 1s because the upper layers handle that task.

Causes of Bit Errors

Copper Cabling/Wireless Connection: Outside interference such as lightning or other electrical noise can cause the bit error if the physical layer uses copper cabling or wireless connection.

Optical Networks: In optical networks, a bit error could occur if the optical module fails, causing it to have difficulty determining the stream of 0s and 1s. Other causes could be improperly terminated cabling, dirty fiber optic connectors, or water penetrating the cable.

Preventing Packet Loss

Proper Installation and Maintenance of the Network:
When installing RJ45 jacks, you may untwist the copper pairs more than needed. This could unbalance the pair, allowing electromagnetic interference (EMI) to impact link performance. Cleaning the end-face of fiber optic connectors is always important, but even more so at higher network speeds.

Proper grounding and bonding eliminate differing ground potentials between different pieces of networking equipment. These are examples that impact the receiver’s ability to distinguish the transmitted bit sequence that leads to corrupted packets.

Media Type: Media type, for example, copper or fiber, should also be considered. CAT6A unshielded twisted pair copper cabling is ideal for new installations, as it provides the best performance for most applications without the added expense of shielded cable. For harsh environments where EMI is present, you may need to install shielded copper cable or fiber cabling, which are immune to EMI.

To learn more about how you can prevent good packets from going bad, download Panduit’s “What is the Impact of Packet Loss” white paper – or subscribe to our blog to receive our complete 4-part series of IoT 101 white papers.