The Role Packet Loss Plays in IT and OT Network Performance

Nobody likes a bad packet.

Depending on the network architecture, however, IT and OT network managers look at packet loss differently.

The impact of packet loss

Packet loss negatively impacts IT/OT convergence by reducing throughput and increasing latency. IT and OT network managers look at packet loss differently.

Why do these managers have unique reasons for wanting to banish bad packets? Panduit’s “What is the Impact of Packet Loss?” white paper answers this question, by discussing issues both IT and OT managers encounter as they transform their networks to support business success in the IIoT era.

Reduced throughput
IT network managers dislike packet loss because it steals valuable bandwidth, reducing the link’s available throughput. Typical latency of the enterprise network is responsive enough for their applications.

There is an insatiable appetite for more throughput in enterprise networks, however, not to mention the demand from the myriad connected devices in our homes and in our offices.

A corrupted packet reduces throughput when the switch discards the packet, and again when it is re-sent – essentially causing the packet to be sent twice and reducing a network’s available throughput.

Increased latency
OT network managers look at corrupted packets through a different lens. On the factory floor, a network’s latency is more important than bandwidth or throughput.

For example, when a sensor on the factory floor sends a packet to request an action, it needs the response in milliseconds. The corrupted packet cannot deliver the request, and the retransmission delays the decision on the appropriate action to take. This event can be costly.

IT/OT Convergence
According to Craig Resnick, vice president of ARC Advisory Group, “to properly address the issue of minimizing the corruption of packets requires the convergence of IT and OT, both from a networking infrastructure perspective and a human resources perspective. Converged network architectures bring together IT and OT systems that have long remained separate. As a result, IT and OT professionals who previously only oversaw their own individual systems now must also understand the counterpart technologies to, for example, help eliminate corrupted packets.”

To learn more about the impact of packet loss and how to minimize corrupt packets, no matter your network perspective, download Panduit’s “What is the Impact of Packet Loss?” white paper – or subscribe to our blog to receive our complete 4-part series of IoT 101 white papers.

 

4 Factors Impacting IIoT Technology Right Now

Bandwidth has a major impact on IIoT technology and your IoT network – it’s one of four requirements that have enabled IIoT applications to flourish.

4 Factors Impacting IIoT Technology

There are four factors that are currently contributing to the growth of IIoT technology. Bandwidth is an underlying component that affects this growth.

Panduit’s white paper, “The Ubiquity of Bandwidth” discusses four reasons IIoT is trending now and how bandwidth plays an integral role in IT/OT data gathering and analytics.

Why is IIoT Happening Now?

What has occurred to propel the IIoT into one of the most popular concepts in IT/OT?

1. Smartphone/Tablet — The widespread adoption of smartphones and tablets has made us comfortable with small devices that provide information and interact with us.

2. The Internet — The Internet, or more specifically, the World Wide Web, is an intricate part of our lives; it is no longer a novelty. We have become accustomed to having our devices access vast amounts of data or upload our personal data to the cloud.

3. Cost — The cost of computing and communications has dropped to a level that makes IoT affordable.

4. Bandwidth — We are used to the increasing speeds of our communication networks but there is another aspect of communications-bandwidth is everywhere.

The Ubiquity of Bandwidth

At the dawn of the computer era, there was only one way to connect devices: wires. Times have changed.

Today, network connections can take many forms: DSL, cable TV plant (FTTx, cable modem), wired Ethernet, Fibre Channel, or Industrial Ethernet for the factory floor.

More impressive is the number of ways to connect wirelessly including Bluetooth, LTE, 5G, satellite, ZigBee, and Wi-Fi.

We now take these connections for granted. Today’s smartphone seamlessly switches between the cellular data network and Wi-Fi.

A decade ago, it would have been unthinkable to see passengers on a commuter train passing the time by streaming their favorite TV program to their hand-held device.

Another aspect of today’s communications links is that they are always on— ever-present. Having to wait for the dial-up modems to train themselves and synchronize is ancient history.

Bandwidth is everywhere. It is this ubiquity of bandwidth that is a necessary component for making the IoT possible.

To learn more about how bandwidth affects your IIoT network, download Panduit’s “The Ubiquity of Bandwidth” white paper – or subscribe to our blog to access all the papers in our IoT “101” white paper series.

 

3 Technology Advances Drive IIoT — and its Demand for Real-Time Data

 

Real-Time Data White Paper

What is the impact on the enterprise data center when it tries to process real-time data from IIoT devices?

Deploying IIoT generates data that needs to be collected, analyzed, and acted on in real time.

What exactly is real time and how does it affect your network’s infrastructure?

Panduit’s latest white paper, “What is the Impact of Real-Time Data?”  explains the relationship between process control and real-time data.

What is Real Time?

The definition varies, but generally, a real-time system is one that provides a smooth, seamless user experience.

This is certainly the case when watching HDTV or listening to streaming music. The video frames and audio samples arrive quickly enough and at the right time.

This allows the viewer or listener to integrate them into a smooth experience rather than discrete samples.

This definition also applies to digital control systems implemented on the factory floor or a flight control system. In those applications, if the digital control system does not respond fast enough, bad things can happen.

Process Control is Generating Real-Time Data

End users and manufacturers of IIoT technology are using three concurrent technological advances to deploy IIoT: sensors, Moore’s Law, and the ubiquity of bandwidth.

Without them, the IIoT and the linkage of the factory floor to the enterprise data center would not be possible.

  1. Sensors—Sensors like microelectromechanical systems (MEMS) accelerometers, gyroscopes, and inertial measurement units (IMU), have become small enough with a reduced cost, making wide deployment practical.
  2. Moore’s Law—Doubling the number of transistors in an integrated circuit every two years has resulted in small, cheap CPUs and memories.  The Raspberry Pi single board computer is an example.
  3. The Ubiquity of Bandwidth—IIoT devices that gather data need to send that data upstream for analysis. The ability to connect to a network is available everywhere. There is a wide range of ways IIoT devices can connect to the network, for example, copper or fiber optic cabling, Wi-Fi, ZigBee, and cellular, to name a few.

Deploying IIoT devices generates large amounts of data that must be analyzed and acted upon in real time.

To learn more about the impact of real-time requirements on your network’s infrastructure, download Panduit’s “What is the Impact of Real-Time Data?  white paper – or subscribe to our blog to receive our complete 4-part series of IoT 101 white papers.

 

How Packet Loss Occurs In Network Infrastructure

Causes of Packet Loss

Packet loss reduces network throughput and adds to latency.

 

Packet loss impacts a network in two ways: it reduces throughput and adds to latency.

But why does packet loss occur in the first place?

The following excerpt from Panduit’s “What is the Impact of Packet Loss?” white paper focuses on the root causes of packet corruption and its prevention.

Corrupted packets can occur when they encounter a bit error as the packet moves from one end of the network to the other. Bit errors almost always occur in the lowest layer of a protocol stack, the physical layer. The job of the physical layer is to move information from one end of the network to the other.

Typically this information is represented by a stream of 0s and 1s. The physical layer does not assign any meaning to the stream of 0s and 1s because the upper layers handle that task.

Causes of Bit Errors

Copper Cabling/Wireless Connection: Outside interference such as lightning or other electrical noise can cause the bit error if the physical layer uses copper cabling or wireless connection.

Optical Networks: In optical networks, a bit error could occur if the optical module fails, causing it to have difficulty determining the stream of 0s and 1s. Other causes could be improperly terminated cabling, dirty fiber optic connectors, or water penetrating the cable.

Preventing Packet Loss

Proper Installation and Maintenance of the Network:
When installing RJ45 jacks, you may untwist the copper pairs more than needed. This could unbalance the pair, allowing electromagnetic interference (EMI) to impact link performance. Cleaning the end-face of fiber optic connectors is always important, but even more so at higher network speeds.

Proper grounding and bonding eliminate differing ground potentials between different pieces of networking equipment. These are examples that impact the receiver’s ability to distinguish the transmitted bit sequence that leads to corrupted packets.

Media Type: Media type, for example, copper or fiber, should also be considered. CAT6A unshielded twisted pair copper cabling is ideal for new installations, as it provides the best performance for most applications without the added expense of shielded cable. For harsh environments where EMI is present, you may need to install shielded copper cable or fiber cabling, which are immune to EMI.

To learn more about how you can prevent good packets from going bad, download Panduit’s “What is the Impact of Packet Loss” white paper – or subscribe to our blog to receive our complete 4-part series of IoT 101 white papers.