The Top 5 Reasons for Modernizing Your Electrical Safety Program

Updated safety standards provide opportunities to modernize your electrical safety program.

In your plant, there’s a good chance your facility’s electrical equipment is constantly being changed or updated (moves and adds) and maybe even improved. Thus, your electrical safety program should also address these changes.

In keeping up with new technology and evolving safety concerns, safety standards are periodically revised. Updated standards should be viewed as a benefit to facility and safety managers, bringing opportunities to modernized your electrical safety program and to stay up to date on existing trends in electrical safety.

Below, we outline the top five reasons for modernizing your electrical safety program:

1. Changes in standards.
If there’s ever a constant, it is change. The NFPA Standard for Electrical Safety in the Workplace (NFPA 70E), is updated every three years. While NFPA 70E isn’t adopted into federal law or OSHA regulation, but OSHA has a history of citing it as a best practice when electrical incidents occur.

OSHA’s general duty clause requires employers (your facility) to provide employees with a place of employment that is “free from recognized hazards that are causing or are likely to cause death or serious harm.” Because OSHA regulations are not frequently updated, they will often reference consensus standards (like NFPA 70E) as a best practice when issuing citations to the general duty clause.

Therefore, even though NFPA 70E is a voluntary standard, and compliance is not required by law, it effectively describes electrical hazards and best practices to mitigate them. Thus, failure to comply with this or similar guidelines can result in OSHA citations.

2. Training will always be important.
For any worker who may exposed to electrical hazards, training is key. Employees performing electrical work need to understand the requirements of the electrical safety program, including the ability to recognize electrical hazards, know safe work practices and the procedures for protection against these hazards.

Non-electrical workers should also be trained to identify electrical hazards and recognize when electrical work is being performed so they do not put themselves or the electrical workers at risk. Training should be ongoing—do not underestimate the importance of retraining. Workers leave, new workers are added, and sometimes people simply forget what they have learned or they may become complacent as tasks become routine.

Additionally, retraining is important if you consider the Normalization of Deviance phenomenon, which is described as “when people within the organization become so much accustomed to a deviant behavior that they don’t consider it as deviant, despite the fact that they far exceed their own rules for the elementary safety.”

3. Facility updates and new equipment.
Electrical equipment in a facility is often moved, added, or reconfigured to keep up with changing production demands. Often, these changes may include updates to safety technology. Thus, the electrical safety program should be updated to address those changes.

So, when new equipment is added, a circuit is moved, protective devices get replaced or settings are changed and, generally, when any electrical wiring or cables) are modified in any way, it’s time to update your arc flash hazard analysis and revisit the safety program.

Retrofits and additions to existing equipment or reconfiguration of lines, are also a great time to evaluate if new electrical safety technology can be incorporated and will signal it’s time to update the electrical safety program.

4. Near misses.
According to the National Safety Council, almost 75% of all accidents are preceded by a near miss. It’s important to document and record near misses, minor accidents and close calls, especially those that have the potential for injury.

The overall safety culture in the facility gets stronger when reporting near misses are encouraged and not punished. If it’s not reported, the opportunity to mitigate hazards by taking corrective actions, including updates to the electrical safety program, are missed.

5. Employee and facility worker expansion.
A modern electrical safety program is all about teamwork. When a facility’s employee base has grown and/or when shifts are added, it’s a good opportunity to take the time to update the electrical safety program to demonstrate to employees – new and old – that the safety culture is strong.

Converse to expansion, if a plant experiences a reduction in staff, or significant employee turnover, this can lead to employees being asked to do other tasks for which they may not be adequately trained.

Therefore, changes that also affect the workforce should be a reminder to revisit the electrical safety program to assure that all workers are not only properly trained, but understand their roles in advancing the safety culture.

3 Way IIoT Technology Benefits From Moore’s Law

IIoT and Moore’s Law and Their Relationship with Bandwidth

There are three ways IIoT technology reinforces Moore’s Law. Bandwidth is a key component of this reinforcement and is the foundation for current technological advances.

 

Moore’s Law predicted the technological advances that we are experiencing today, and bandwidth is helping to propel those advances forward, specifically for IIoT. Panduit’s white paper, “The Ubiquity of Bandwidth,” explains how Moore’s Law factors into IIoT network capabilities.

Moore’s Law

Gordon Moore is best remembered as a co-founder of Intel. But while he was the director of Research & Development at his previous employer, Fairchild Semiconductor, he authored a paper in 1965 titled, Cramming More Components onto Integrated Circuits. In the article, Moore predicted that the number of transistors contained within a semiconductor will double approximately every two years.

Moore’s Law is applicable along three axes:

Cost – The cost for many transistors drops by almost half with every reduction in the size of the transistors.

Performance – Processor speeds increase because the smaller the transistor, the faster it can operate. Additionally, the transistors become closer to each other which reduces the latency between them.

Complexity – For a given size, the number of transistors doubles with the reduction in feature size. This allows more complex implementations and circuitry.

Although all three aspects of Moore’s Law are important, it is the ability to implement ever-increasing complexity that might be the most important.

For example, if a smartphone was built using the semiconductor technology available in 1971, the phone’s microprocessor would be the size of a parking space. In fact, the communication theories needed for ubiquitous bandwidth evolved in the late 1940s and 1950s.

They could not have been implemented at that time, however, because it would have been impractical to build with vacuum tubes or discrete transistors.

IIoT Technology

IoT has captured product developers’ imagination. In the consumer space, it remains to be seen what applications will take hold, but wearables seem a certainty.

It is a similar situation on the factory floor as numerous deployment scenarios exist, but we will need some history for us to see which ones provide a suitable ROI.

Tracking packages, monitoring, and alerting applications are one thing. Implementing advanced analytics and complicated algorithms to extract meaning from IIoT data that has been gathered is something else.

None of this would happen without the ubiquity of bandwidth.

To learn more about bandwidth and why it’s essential for your IIoT network’s infrastructure, download Panduit’s “The Ubiquity of Bandwidth”  white paper – or subscribe to our blog to access our IoT “101” white paper series.

 

 

Julio Franco, (2015, April 20). “50 Years of Moore’s Law: Fun facts, a Timeline Infographic and Gordon’s Own Thoughts 5 Decades Later.” Techspot. [Online]. Available: https://www.techspot.com/news/60418-50-years-moore-law-fun-facts-timeline-infographic.html.

Gordon Moore, “Cramming More Components onto Integrated Circuits,” Electronics, volume 38, no. 8, 1965.

M. Patel, et. al. (2017, May 19) “What’s New with the Internet of Things?” McKinsey & Company. [Online]. Available: https://www.mckinsey.com/industries/semiconductors/our-insights/whats-new-with-the-internet-of-things.

Reduce the Risk of Arc Flash With a Reliable and Repeatable Repair and Preventative Maintenance Program

The importance of preventative maintenance programs can’t be understated. Especially when it comes to reducing the risk for arc flash. Accuracy and repeatability are critical to any machine operation, but that also applies to the preventative maintenance program itself. Facility and safety managers understand that repeatability makes work easier to implement.

Even the most conservative estimates say that there are up to five arc flash explosions occurring in electric equipment every day in the United States. Even more electrical incidents happen daily, but there are ways companies can significantly reduce the occurrence of these incidents to create a safer workplace.

Preventative maintenance can increase machine reliability, which decreases the need to access that equipment for repairs. This, in effect, increases overall plant safety when machines and equipment are operating as planned without the need for unscheduled maintenance. NFPA standard 70B outlines the best practices for setting up and maintaining an Electrical Preventive Maintenance (EPM) program. Additionally, the InterNational Electrical Testing Association (NETA) offers tremendous resources on preventative maintenance with their PowerTest Conference seminars.

An effective Electrical Preventive Maintenance (EPM) program helps avoid extra expenses, disruptions and potentially lost profits that may result from equipment breakdown or an arc flash. Typically, in setting up an EPM, it begins at the main service entrance and works its way through the electrical distribution system to automation and controls all the way to the machine level.

There are a variety of reasons why an arc flash may occur; it could be an accumulation of conductive dust inside an enclosure or purely equipment failure – likely the result of inadequate maintenance. In short, if electrical equipment is not maintained, then something is going to give.

An effective means of preventing electrical incidents and arc flashes is the anticipation and elimination of the conditions that may cause them. Spotting potential signs of an electrical failure include:

  • Identifying and repairing compromised insulation before it fails.
    Predictive maintenance systems can provide early warning of insulation degradation or failure. Visual inspections of the condition of insulation and electrical joints should be conducted whenever maintenance is performed.
  • Monitoring electrical equipment at critical joints including, lugs and compression fittings.
    Over time, heat cycles and vibration can loosen connections which can cause overheating and may lead to an arc flash. Thermal sensors can help monitor these critical joints.
  • Using infrared windows.
    Using infrared thermal scanning through IR windows enable technicians to perform scans without removing equipment covers or opening doors, lessening the likelihood of arc flash events caused by accidental contact and exposure.

It should go without saying, that before performing any electrical work in any form of maintenance, that it’s important to de-energize the equipment and verify that an electrically safe work condition has been established.

Verifying absence of voltage is important and the testing method to work on de-energized equipment must also be safe and effective. The electrical worker who conducts the testing needs to understand testing procedures and be repeatedly proficient with the testing devices.

Verifying the absence of voltage with the Panduit VeriSafe Absence of Voltage Tester before equipment is accessed makes it easy to verify that an electrically safe work condition has been established without exposure to hazards.

The results of having a reliable electrical safety and preventative maintenance program will reduce risk, minimize business interruptions and even extend the life of your plant’s electrical equipment.

Understanding Electrical Safety in Today’s Changing Landscape

Being able to identify electrical hazards and having tools, safety procedures and instructions available to mitigate risk is essential to ensuring safety.

 

It’s important to have a workforce that understands how keeping up with the times is paramount to staying safe in the workplace. Much can said about the importance of creating an electrically-safe workplace, but it is the responsibility of any employer to provide a safe environment, free of hazards to its employees.

In 2015, the National Fire Protection Association (NFPA) created an accreditation, the “Certified Electrical Safety Worker (CESW)” certification program, which was based on the most current edition of NFPA 70E, the Standard for Electrical Safety in the Workplace. The program ensures that electricians have the knowledge, training and experience to perform their jobs at the highest, safest level possible. Obviously, one key to safety during times of change is keeping aligned with consensus standards, which the NEC and NFPA updates every three years. Below are changes any plant might encounter and thus has a need to be prepared for.

VeriSafe – Absence of Voltage Tester

Changes in Standards
As safety standards evolve, so too must the company and its workforce. The latest release of the NFPA 70E-2018, includes updates that are essential for the company and its employees to understand. When NFPA 70E released its 2018 update, a new exception was included that allows Absence of Voltage Testers (AVTs) listed to UL 1436 to be used to verify the absence of voltage instead of a handheld voltmeter. Changes to consensus standards can take safety at a facility from good to great.

Changes in the Plant
When business grows, the facility grows. New machines are added, the electrical capacity needs grow, and thus an increased need for overall, plant-wide electrical safety grows. Sometimes, there can be an overcrowding in electrical rooms and production areas with added equipment. Other times, challenges are created when multiple suppliers of equipment create anomalies. While codes and standards evolve, and as equipment is added, there can be these compatibility issues. Standardizing processes and procedures can help minimize or prevent human error. Panduit provides solutions for the electrical infrastructure that can help bridge multiple equipment manufacturers or areas of equipment as additions take place. The VeriSafe Absence of Voltage Tester is compatible across many equipment types and manufacturers, provided the specifications have been met.

Changes in Plant Operations and Performance 
The rise in automation in plants today is proof that the robots are here. The qualified electrical worker meets all of the training requirements set by NFPA 70E and OSHA, and as a general rule, each qualified electrical worker may need several days of training each year to maintain the level of skill. It may be a good idea to plan for that training over a three-year period – which helps to ensure that the qualification process continues to track changing requirements. It’s possible that effective training may be something that is repeated in different formats periodically in order to keep if fresh and top-of-mind. This may toggle between classroom instruction, hands-on skills demonstration and audits.

New equipment brings new types of hazards and risks. Being able to identify these hazards and having tools, safety procedures and instructions available to mitigate risk is essential to ensuring safety. Perhaps even more game-changing than automation is the availability of connectivity and networking on the plant floor. This allows safety procedures to become more connected and integrated into workflow with the ability to track and log tasks, as well as access to video for training and recording purposes.

Why Your Electrical Infrastructure is Too Important Not to Be a Maintenance Priority

The electrical infrastructure of a building, including distribution and controls, is the heart of any facility.

 

Too often, electrical systems aren’t always given the maintenance priority they might deserve. Today, we understand the importance of why the electrical infrastructure is critical to doing business and why plant safety can be enhanced with a little thought and planning.

For the majority of electrical work that happens in a facility, including scheduled maintenance, de-energizing the system is the fundamental requirement for safety. The electrical infrastructure of a building, including distribution and controls, is the heart of any facility. Without a reliable source of electricity, production would not be possible. So, what can be done to make electrical system maintenance a priority?

Schedule regularly, avoid spontaneity.
Even with the critical nature of electrical equipment, regularly scheduled maintenance needs to be a primary focus. Facility managers don’t often think about maintenance until a disruption, like an equipment failure, occurs within the system.

Neglecting regular maintenance of electrical equipment, especially over a long period of time, may lead to a disruption in facility operations and possibly a damaging system failure or an incident. Reliable equipment will increase safety and decrease property risks.

Don’t overlook the obvious.
Electrical equipment, especially what modern facilities are installing today, is well-designed, it’s safe to operate and it generally has a long service life. By nature, electrical systems are usually hidden from sight.

Thus, when it’s out of sight, it’s out of mind – awareness may not be raised as long as lights turn on and everything operates as it normally would. Even new equipment requires a proactive maintenance and service program and then it needs to be inspected to ensure it is properly installed, functioning and can be well maintained.

The Electrical System Can’t Always Speak for Itself.
Though sensors and condition-based monitoring are becoming more and more common, particularly thermal monitoring of critical electrical infrastructure, a fair amount of electrical equipment in use today still can’t warn us when a failure is imminent.

It could be less disruptive to operations if workers could identify equipment that is about to fail, before the failure occurs, so proper steps could be taken to prevent or minimize the downtime impact to people, processes, equipment and operations.

Regular maintenance is required to ensure that equipment can be operated as expected. For example, contacts that are not regularly exercised have a tendency to stick, or not open at all, leading to longer clearing times than expected.

Plan for maintenance.
While de-energizing equipment is a fundamental requirement for electrical safety, de-energizing by its nature is disruptive to facility operations. Thus, it is best to anticipate and plan for maintenance.

A conscious plan for maintenance is far financially advantageous to the other option, when unplanned maintenance occurs when least expected. It also may be helpful knowing that a facility-wide shutdown is happening, so steps can be taken to ensure operational disruptions will be minimized.

Maintenance shutdowns have a cost and require planning, so it’s important to anticipate the need and even budget appropriately. If the facility does not have trained and qualified electrical workers to perform the system maintenance, then many qualified service companies exist and can offer these services.

Planned maintenance has the distinct advantage of making sure that experts can be present. Some equipment manufacturers can even be onsite to assist customers with large PM programs when maintenance is scheduled in advance and not unplanned.