New NFPA 70E Labeling Requirements

The NFPA 70E Standard provides guidelines for electrical safety in the workplace. Recently this standard has been updated to provide consistency of terms with other standards that address hazards and risk.

Some of these changes introduced new terms such as arc flash risk assessment to replace arc flash analysis and shock risk assessment to replace shock hazard analysis.

Determining the Arc Flash Risk Assessment and Shock Risk Assessment for electrical devices provides important information to warn of the specific risks associated with an energized piece of equipment. This information is communicated to workers through the use of equipment labels.

In Section 130.5(D) of the 2015 NFPA 70E Standard new requirements for Arc Flash Warning Labels are explained.

Continue reading

The Problem with High Density Fiber Enclosures – and the Solution

Last week I posted a blog about what is driving the adoption of high density fiber enclosures. High density fiber enclosures can help reduce the high cost of real estate. Possibly, one might find themselves with a data center where space is constrained so a high density fiber enclosure can help ease those space constraints.   I also said that high density fiber enclosures are used in data centers that are revenue generators because they make it possible to include more revenue-generating active equipment.

So a high density fiber enclosure helps add more equipment to a finite amount of space, but, as they say, there is no free lunch.

Continue reading

What Is Driving Adoption of High Density Fiber Enclosures?

Real estate is one of the primary reasons that high density fiber enclosures are deployed in the data center. In some parts of the world, real estate is very expensive. One way to save cap ex is to try to use the smallest data center possible. The smaller the data center, the less square area required, and therefore, lower cap ex. This would certainly be the case if one is using a co-lo facility. Of course, a smaller data center also means lower op ex, e.g., less cooling, etc.

Another reason, also driven by real estate, is that the data center’s size is fixed. The data center cannot be enlarged. This might be the situation in dense urban areas where a larger space does not exist. The only way to add more functionality to the data center is to try and find a way to cram in more equipment. Hence, using a high density fiber enclosure.

Another less obvious reason for using a high density fiber enclosure is the trend towards data centers becoming profit centers. Historically, data centers were perceived as a cost of doing business. Depending on the business you are in, that may no longer be the case.

Continue reading

Cabinets Are More Than Big Metal Boxes

How do cabinets impact operational costs?

This question is not asked enough by data center designers, owners or managers as they build-out new whitespace. Cabinets are the foundation of the data center’s physical infrastructure, used throughout the life cycle of the facility. IT equipment that runs the applications are contained within them, the cabling that connects the equipment to the users and the LAN/SANs are terminated and managed in them, power is distributed within them, and cooling is channeled through them. They are also the most visible infrastructure element, and how they look and fit together is often an indicator of how a data center is run and managed.

Why then are they frequently taken for granted, simply considered “big metal boxes”? Why isn’t there more emphasis on cabinets being considered an asset that helps reduce operational costs?

Continue reading

Choosing the Right Media Type for 10 Gig Ethernet

You are ready to deploy 10 gigabit Ethernet, but what media type should you use?  As you might suspect, that is not a straightforward question to answer.  There are several things you need to consider before making the right choice, and some of the choices may be contradictory.

Does you data center require using a structured cabling solution?  If so, then you will most like stay away from Direct Attach Cable (DAC) assemblies used for 10GBASE-CR because that is a point-to-point solution, and lean toward 10GBASE-T.

Continue reading

Adding New Physical Infrastructure: Part 2

Integrated Infrastructure: A New Approach

In Part 1 of “Adding New Physical Infrastructure” I reviewed three typical approaches taken by managers of small and mid-sized data centers to add new physical infrastructure: (1) build-it-yourself using in-house resources to design and integrate all elements of the infrastructure, (2) rely on a single supplier for design and integration, or (3) entrust multiple best-of-breed vendors to get it done.

We have a different take. As discussed in Part 1, you are likely to face significant risks and expense as you attempt to manage a wide range of technical details, complex project management issues, and multiple vendor relationships. Leveraging physical infrastructure expertise and partnerships with best of breed power and cooling suppliers, Panduit offers an Integrated Infrastructure approach that combines the benefits of both the single-source and best-of-breed approaches with the ease of managing a single supplier.

Continue reading

Adding a New Physical Infrastructure: Part 1

How do you build out a new data center physical infrastructure?

Under the best of circumstances, building out new data center capacity is complex, expensive, time consuming and fraught with risk. Experts, engineers and consultants are needed for everything from designing the building shell, planning power and cooling systems, to commissioning. These are just the major categories. Think about the expertise needed to manage all the details that cascade from them!

If you are responsible for a small to mid-sized data center you may be faced with doing more of this yourself given the available resources. Increased complexity makes it difficult to find and retain people who possess all the essential skills needed to design and integrate the power, cooling, racks, cabling and other components necessary to complete the build correctly, and on-time. Taking on the coordination of the build-out in addition to normal responsibilities can be overwhelming.

Continue reading

Implementation of a Lockout/Tagout Program

To successfully implement a lockout/tagout program at your facility, each of the 5 elements below are needed:

1. Program: Lockout/Tagout Program Documentation
To create the Lockout/Tagout program documentation, several areas need to be addressed. These topics include, but are not limited to, the following:

  • Purpose and Scope
  • Rules
  • Lockout Procedures and Techniques
  • Removal of Lockout Devices
  • Training
  • Tagout Procedures

Continue reading

Hasn’t Everyone Deployed 10G Ethernet?

The other day I was participating in a conversation with a customer about LAN and SAN speeds greater than 10G. It was a good conversation and the customer had numerous questions about migrating to 40G Ethernet; what is happening with 100G Ethernet, using multiple fibers for Fibre Channel, etc.

Toward the end of the conversation I asked them about their plans regarding deploying 40G Ethernet. They replied that they had no immediate plans for deploying 40G and that the reason they wanted to talk about it was to make sure that their LAN infrastructure could support it in the future. They plan on deploying 10G Ethernet in the new data center.

That revelation hit me with the same impact as participating in an ice bucket challenge.

Continue reading

Are We Approaching a Technical Skills Shortage?

A concern has been growing in recent years over the potential for a technical skills shortage in the U.S., Canada, and elsewhere around the globe, particularly in science, and engineering-related occupations.

It is generally predicted that, by 2018, a mass wave of retirements by members of the Baby Boom generation will result in 1.2 million U.S. job openings in science, technology, engineering, and math (STEM) fields, and there will likely be a significant shortage of qualified applicants to fill them.  The full depth of the STEM skills shortage may be even greater than this, as 50 percent of jobs that require STEM skills do not require a bachelor’s degree or better, according to Plant Services.

Continue reading